Natural killer cells suppress human erythroid stem cell proliferation in vitro.

نویسندگان

  • K F Mangan
  • M E Hartnett
  • S A Matis
  • A Winkelstein
  • T Abo
چکیده

To determine the role of natural killer (NK) cells in the regulation of human erythropoiesis, we studied the effects of NK-enriched cell populations on the in vitro proliferation of erythroid stem cells at three different levels of maturation (day 14 blood BFU-E, day 5-6 marrow CFU-E, and day 10-12 marrow BFU-E). NK cells were enriched from blood by Percoll density gradient centrifugation and by fluorescence-activated cell sorting (FACS), using the human natural killer cell monoclonal antibody, HNK-1. The isolated enriched fractions were cocultured with autologous nonadherent marrow cells or blood null cells and erythropoietin in a methylcellulose erythroid culture system. Cells from low-density Percoll fractions (NK-enriched cells) were predominantly large granular lymphocytes with cytotoxic activity against K562 targets 6-10-fold greater than cells obtained from high-density Percoll fractions (NK-depleted cells). In coculture with marrow nonadherent cells (NA) at NK:NA ratios of 2:1, NK-enriched cells suppressed day 5-6 CFU-E to 62% (p less than 0.025) of controls, whereas NK-depleted cells slightly augmented CFU-E to 130% of controls (p greater than 0.05). In contrast, no suppression of day 10-12 marrow BFU-E was observed employing NK-enriched cells. The NK CFU-E suppressor effects were abolished by complement-mediated lysis of NK-enriched cells with the natural killer cell antibody, HNK-1. Highly purified HNK-1+ cells separated by FACS suppressed marrow CFU-E to 34% (p less than 0.025) and marrow BFU-E to 41% (p less than 0.025) of controls. HNK- cells had no significant effect on either BFU-E or CFU-E growth. NK-enriched cells were poor stimulators of day 14 blood BFU-E in comparison to equal numbers of NK-depleted cells or T cells isolated by E-rosetting (p less than 0.01). Interferon boosting of NK-enriched cells abolished their suboptimal burst-promoting effects and augmented their CFU-E suppressor effects. These studies provide evidence for a potential regulatory role of NK cells in erythropoiesis. The NK suppressor effect is maximal at the level of the mature erythroid stem cell CFU-E. These findings may explain some hypoproliferative anemias that develop in certain NK cell-activated states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Mesenchymal Stem Cells Do Not Suppress Lymphoblastic Leukemic Cell Line Proliferation

Background: Several studies have demonstrated the immunosuppresive effects of mes-enchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this re-gard. Objective: To investigate if adipose derived MSCs could inhibit Jurkat lym-phoblastic leukemia T cell proliferation during coculture. Me...

متن کامل

Effects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study

Background:As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. S...

متن کامل

In vitro Induction of Fetal Hemoglobin in Erythroid Cells Derived from CD133 Cells by Transforming Growth Factor-b and Stem Cell Factor

Increased fetal hemoglobin (HbF) in b-globin gene disorders ameliorates the clinical symptoms of the underlying disease. 5-azacytidine, butyrate and hydroxyurea, have been shown to activate g-globin gene expression. It has also been found that hematopoietic growth factors can influence expression of g-globin in erythroid cultures and in animal models. This study was designed to evaluate the in ...

متن کامل

P 141: Mesenchymal Stem Cells as Treatment in Neuroinflammatory Disease

Mesenchymal stem cells can be obtained from deferent tissues like adipose tissue, umbilical cord, placenta, skin, bone marrow, etc. These cells have regulatory effects on all types of immune cells such as dendritic cell, natural killers and lymphocytes. Mesenchymal stem cells induce inhibitory phenotypes of Antigen Presenting Cells (APCs) following their activity. They also change T cells pheno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 1984